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Abstract
As a hot topic in the GNSS community in recent years, PPP-RTK integrates the advantages of PPP and RTK, aiming to
quickly realize centimeter-level single point positioning with ambiguity resolution. However, PPP-RTK still faces challenges
in difficult urban environments. The performance of precise positioning will seriously deteriorate by the receptions of complex
multipath andNLOS (non-light-of-sight) signals. The 3D-mapping-aiding (3DMA)method has been proven effective in urban
navigation and positioning, such as detecting and excluding NLOS satellites. But the rough excluding strategy may cause
more insufficient satellites. Thus, this study proposes a 3D-mapping-aided weighting algorithm to enhance the performance
of PPP-RTK in complex urban environments. We modeled the 3DMA weighting function first by analyzing static GNSS
data in various urban environments. Then, the proposed algorithm was applied to both static and kinematic positioning
experiments. According to the results, the 3DMAweighting can be complementary to the classic C/N0 weighting: the 3DMA
weighting can identify those poor measurements with high-C/N0 in urban environments while the C/N0 takes only a rough
and preliminary diagnostic of the measurements. It could accelerate convergences and mitigate some outliers in slight and
medium urban environments. In deep urban environments, it could achieve positioning availability of more than 90% with
a horizontal precision of better than 20 cm, while the availability of traditional PPP-RTK without 3DMA may be less than
50%. The RMSs in horizontal components of the positioning errors after convergence are generally less than 10 cm while
classic PPP-RTK reaches only the sub-meter level most of the time. We believe the 3DMA algorithm can benefit the precise
GNSS positioning in urban canyons.
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1 Introduction

Urban precise positioning is increasingly attracting peo-
ple’s attention, since it can play an important role in many
emerging areas, such as pedestrian navigation, autonomous
driving and unmanned aerial vehicle distribution. As an
absolute positioning mean, GNSS positioning is very cru-
cial and necessary. Precise point positioning (PPP) and
real-time kinematic (RTK) are two major GNSS precise
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positioning methods since the end of the twentieth cen-
tury. With the help of precise satellite orbits and clocks,
PPP can provide centimeter-level positioning solutions based
on a single station (Zumberge et al. 1997). However, the
performance of PPP is always affected by its slow con-
vergence (e.g., a few tens of minutes typically for GPS).
Even using the ambiguity resolution (AR)method andmulti-
GNSSmulti-frequency GNSS data, the convergence still has
to cost several minutes. Geng et al. (2020) studied that triple-
frequency GPS/GALILEO/BDS-2/QZSS PPP-AR needs to
spend 6 min on average to achieve convergence. For RTK,
as a relative positioning technique, it needs at least one
baseline to build double-differenced GNSS observations so
that the common delays could be eliminated (Counselman
and Gourevitch 1981). However, the performance of RTK
depends on the quality of the reference station and the length
of the baseline. A long baseline usually cannot eliminate
distance-dependent biases (e.g., atmospheric delays), result-
ing in a less accurate result. The NRTK (Network RTK),
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which is based on the continuously operating reference sta-
tion network, can generate better virtual observations or
corrections in observation space for rover stations to realize
relative positioning (Rizos 2002). However, NRTK usually
needs a dense station network. This technique is not only
enduring the pressure from infrastructure building and costs,
but also facing the burden from the observation space repre-
sentation (OSR) mode and communication (Wübbena et al.
2005). In recent years, PPP-RTK becomes more and more
popular in the GNSS community. The PPP-RTK technology
integrates the superiorities of PPP and RTK (Wübbena et al.
2005). PPP-RTK can achieve convergences and ambiguity
resolutions as fast as NRTK in general. In contrast to theOSR
of NRTK, the state space representation (SSR) is adopted
by PPP-RTK. The advantages of SSR are well-known, espe-
cially for marine applications, such as a small bandwidth, the
uni-directional communication link and minimizing station-
dependent GNSS errors (Wübbena et al. 2005). The detailed
error analyses when studying the integrity and functional
safety in many applications (e.g., autonomous driving) can
also be achieved conveniently.Users can also receive the SSR
corrections they need, such as using only the atmospheric
product to analyze the atmosphere, and the information is
accurate. PPP-RTK has both server and user ends. The SSR
information generated by the server end is essential for
PPP-RTK, including satellite phase biases, ionospheric cor-
rections and tropospheric corrections (Wübbena et al. 2005;
Teunissen et al. 2010; Geng et al. 2010, 2011; Zhang et al.
2011; Banville et al. 2014; Odijk et al. 2016; Wu et al. 2020).
Considering the ease of the communication budget, PPP-
RTK is a promising technique in urban areas.

In an open-sky environment, GNSS PPP-RTK can quickly
realize centimeter-level single point positioning with ambi-
guity resolution (e.g., instantaneous centimeter-level posi-
tioning) (Odijk et al. 2016; Zhang et al. 2019; Psychas
and Verhagen 2020; Wu et al. 2020). However, we can-
not ignore the vulnerability of GNSS signals. Multipath
effects and none-light-of-sight (NLOS) receptions are the
two main challenges for GNSS positioning in the urban
canyon (Groves et al. 2013). This intrinsic characteristic of
a GNSS receiver can easily be affected by the two notori-
ous effects in the urban canyon, resulting in large biases and
highly noisy pseudorange and carrier-phase measurements.
This will degrade the performance of PPP-RTK. Thus, how
to handle the unsatisfactory GNSSmeasurements is a crucial
issue for urban GNSS positioning. Mitigating the multipath
is a common approach to improving positioning precision.
The sidereal filtering and the multipath hemispherical map
(Ragheb et al. 2007;Dong et al. 2016) are two kinds of classic
methods in the geodesy community, but they are only suit-
able for (quasi-)static stations. As for urban environments,
the approaches of detecting and excluding or de-weighting
the multipath-affected measurements are popular. Based on

the rawGNSSmeasurements,C/N0 (carrier-to-noise-density
ratio) has been widely used. Realini and Reguzzoni (2013)
proposed a sophisticated C/N0 based weighting algorithm
that significantly improves the precision by about 20%. Jiang
and Groves (2014) used C/N0 to detect NLOS signals with
a dual-polarization antenna. However, Hsu (2018) indicated
that the received signal strength is not the only factor to cor-
relate with the NLOS delay in deep urban canyons.

The 3D building model has been widely studied and
adopted for the applications of urban navigation (e.g., van
Diggelen 2021). It becomes a digital infrastructure, which
can facilitate GNSS users with connectivity such as intelli-
gent vehicles and smartphone users. Generally, there are two
typical approaches to using the 3D buildingmodel for intelli-
gent urban navigation. One is GNSS shadowmatchingwhich
is based on the satellite visibility and 3D building model
(Groves 2011; Groves et al. 2015). It can effectively deter-
minewhich side of the user standing on.However, it struggles
with low accuracy in the along-street direction (Groves et al.
2015). The other one is based on GNSS ray-tracing (Lau
and Cross 2007), realizing positioning by comparing the
ray-tracing simulated and observed observations (Suzuki and
Kubo 2013; Miura et al. 2015; Hsu et al. 2016). Ray-tracing
can calculate the reflection delays and provide corrections
by predicting the signal path. Zhong and Groves (2021)
also used the likelihood-based 3DMA GNSS via a statis-
tical model to correct the pseudorange effectively. Besides,
many other studies usually use the 3D building model to
assist classic GNSS positioning, such as excluding the mea-
surements with multipath or NLOS effects, modeling NLOS
effects by 3D-mapping-derived indexes, etc. (Groves et al.
2012; Ahmad et al. 2013; Groves and Jiang 2013; Peyraud
et al. 2013; Hsu et al. 2015; Hsu 2018; Ng and Hsu 2021).
Recently, Ng and Hsu (2021) applied the 3D building model
for RTK with detecting and excluding NLOS affected mea-
surements, and the 3DMA RTK can provide a 10-cm-level
positioning accuracy on average in a medium urban area,
which demonstrates the benefit of the 3DMAmethod to clas-
sic GNSS precise positioning techniques.

Therefore, to improve the performance of urban PPP-
RTK, this study focuses on realizing 3DMA PPP-RTK.
Considering the common issue of insufficient satellites in
urban canyons, a novel 3DMAweighting algorithm is devel-
oped instead of the rough excluding strategy. The reason
behind is to avoid the distortion of the dilution of precision
(DOP) after the exclusion of NLOS measurements (Zhang
et al. 2018). In addition, the proposed weighting algorithm
can bewidely applied to existing advancedmethods ofGNSS
precise positioning. In other words, it can be used in the noise
covarianceof themeasurement vector by indicating the sever-
ity of multipath effects. We believe the proposed weighting
algorithm will be useful and convenient for the researchers
in the geodesy community. The remainder of this study is
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organized as follows. We will introduce the methods of PPP-
RTK and the proposed algorithm first. Then, the data and
experiment settings are described. In the next part, the data
analysis for building weighting functions and the results of
3DMAPPP-RTK static and kinematic experiments are given.
Afterwards, extended discussions about urban PPP-RTK are
carried out. Conclusions are drawn in the last section.

2 Methods

2.1 PPP-RTK server and client implementation

Generally, the PPP-RTK platform consists of two parts: the
PPP-RTK server and client ends. The PPP-RTK in this study
is built based on the undifferenced uncombined PPP model
with applying not only the satellite orbit and clock products
in the state space but also the satellite phase bias product and
the atmospheric products in the state space (Wübbena et al.
2005). The PPP-RTK server end is generating all kinds of
satellite-related and atmospheric corrections, especially for
the ionospheric and tropospheric corrections. The client end
can realize precise positioning based on the PPP model with
the detailed SSR. Themain difference between PPP and PPP-
RTK is that PPP-RTKhasmore complete correction products
and constraints. The main difference between RTK and PPP-
RTK is that PPP-RTK eliminates the errors (e.g., clock errors
and atmospheric errors) of the space state while RTK elim-
inates the errors by making differences of pseudorange and
carrier-phase observations among different stations and dif-
ferent satellites. Namely, PPP-RTK is SSR-based while RTK
is OSR-based.

The following Eq. (1) shows the raw GNSS measurement
model in the case of multi-GNSS data,
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where P j
i , 1, P

j
i , 2, ϕ

j
i , 1, ϕ

j
i , 2 are the pseudorange and carrier-

phase observations from satellite j to receiver i for L1 and
L2 frequencies (L1 and L2 for GPS satellites, E1 and E5a
for Galileo satellites, B1I and B2I for BDS-2, B1C and B2a
for BDS-3). ρ

j
i is the geometric distance between satellite

j and receiver i . c is the velocity of light. t Si is the receiver

clock for the satellite system S. Each system will have an
individual receiver clock to handle the inter-system bias. m j

i
is the mapping function for mapping the zenith tropospheric
delay Ti to the line-of-sight direction. I ji is the ionospheric
delay on the L1 signal for satellite j . μS is the coefficient for
the ionospheric delay which equates to fS, 1

fS, 2
. fS, 1 and fS, 2

are the frequencies of L1 and L2 for satellite system S. λS, 1

and λS, 2 are the wavelength of L1 and L2 signals. N j
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delays for pseudorange measurements at the satellite and the
receiver ends, respectively. bSi , 1, b

S
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j
1 , b

j
2 are the hard-

ware delays for carrier-phase measurements at the satellite
and the receiver ends, respectively. To overcome the rank
deficiency of adjustment caused by the linear dependency
between hardware delays and clock parameters (Odijk et al.
2016), the re-parameterization will be realized in our PPP-
RTK processing.

The PPP-RTK platform realized in this study is displayed
in Fig. 1. The server end is responsible for providing the
IGS satellite products including orbit, clock and code OSB
(observable-specific signal bias), the phase OSB generation
module and the atmospheric correction generation module
(Geng et al. 2022).

To estimate the re-parameterized parameters that absorb
related hardware biases, t̂ Si , Î

j
i and N̂ j

i , 1, N̂
j
i , 2, and the param-

eter Ti at the server end, the measurement models after
considering all modeled and known corrections, l ji , P1 , l

j
i , P2

,

l ji , L1
, l ji , L2

(e.g. geometric distance, satellite clock, antenna
phase center), are given as following:
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As for the PPP-RTK server, by fixing the known refer-
ence stations’ coordinates, satellite precise clock and satellite
precise orbit, the float ambiguities N̂ j

i , 1 and N̂ j
i , 2 could be

estimated. The L1 and L2 float ambiguities collected from a
global/regional GNSS station network are next used to cal-
culate the phase OSBs (Schaer et al. 2021; Geng et al. 2022).
Note that satellite clocks need to be re-estimated after iden-
tifying the phase biases (Geng et al. 2019).

The atmospheric correction generation module can com-
pute the ambiguity-fixed satellite-station-specified iono-
spheric delays and the ambiguity-fixed station-specified
tropospheric delays with the help of the known coordinates
and the generated phase OSBs above. Thus, we can interpo-
late atmospheric corrections based on the station distribution.
As Eq. (3) shows, IDW (inverse distance weighting) method
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Fig. 1 Structure of the PPP-RTK platform in this study

(Franke 1982) is used in this study. k is the index of the
reference station, and n is the number of reference stations.
disti , k denotes the geometric distance between user i and the
reference station k. γ is the exponential value for IDW, and
the user can tune it based on the actual performance of the
interpolation. γ is set as 1 in this paper.

� Ĩ j , refi =
n∑

k=1

⎛

⎝
dist−γ

i , k

�n
k=1

(
dist−γ

i , k

) · � Î j , refk

⎞

⎠ (3)

Note that the raw ionospheric delay Î ji of each station-
satellite pair will absorb some receiver-specified hardware
biases, so the operation of the single-difference between
satellites should be carried out by selecting a reference
satellite (with superscript ref) to eliminate the receiver-
specified errors in the raw ionospheric delays and get the
single-difference ionospheric delay � Î j , refk . Only if the
receiver-specified errors in raw ionospheric delays are elim-
inated, the subsequent interpolation of the network can be
carried out correctly. Namely, the client end will interpolate
satellite-pair ionospheric delay � Ĩ j , refi and the tropospheric
delay T̃ for use.

The client end is based on the undifferenced uncombined
PPPmodel, and the EKF (extended Kalman filter) is adopted
to realize the parameter estimation. Compared with the clas-
sic PPPwith ambiguity resolution, the PPP-RTK in this study
can be achieved by adding tight atmospheric constraints to
accelerate the convergences of relevant parameters so that

ambiguities can be quickly resolved and the positions will
be improved significantly. As Fig. 1 shows, based on the
atmospheric corrections generated from the server end, they
can be regarded as constraints in pseudo-observation and be
added to the model, i.e., the last two rows in Eq. (4). The
form can be
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where α
j
i , 1, α

j
i , 2 are the unit vectors from receiver i to satel-

lite j . xi denotes the correction position vector relative to
the initial guess of the user coordinates. After the measure-
ment update of the EKF, the raw ambiguities are mapped
into satellite-pair wide-lane (WL) ambiguities. Then, the
mapped covariancematrix is injected into the LAMBDA (the
least-squares ambiguity decorrelation adjustment) method
(Teunissen et al. 1997) to search for the integer WL ambi-
guities, and the parameters will be updated based on the
new covariance matrix. After the WL ambiguities are fixed,
the narrow-lane (NL) ambiguities can be deduced and the
covariance matrix can also be mapped into a new matrix
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with the satellite-pair NL ambiguities. In the same way, the
new covariance matrix based on the NL ambiguity will be
injected into the LAMBDA method for searching the inte-
ger NL ambiguities (Ge et al. 2008). We can obtain the final
ambiguity-fixed result of PPP-RTK through the parameter
update (Dong and Bock 1989). Note that partial ambiguity
fixing is adopted for obtaining a better success rate.

2.2 3DMA, C/N0 and elevation-angle-dependent
weighting functions

In general, a weighting function can be modeled based on
analyzing measurement errors. The key point is to find the
relationship between the error and the selected parameter, and
the selected parameter should have a significant correlation
with the measurement error. By the ray-tracing algorithm,
signals can be classified into LOS, NLOS and multipath
(combination of reflection and line-of-sight signals). Accord-
ing to a general distribution of different receptions in a
skyplot (Icking et al. 2020), LOS receptions are in an area
higher than the building boundary. Reflection-caused mul-
tipath is near the building boundary. NLOS receptions with
big delays are in the area lower than the building boundary.
Therefore, the difference between the elevation angle of the
satellite and the elevation angle of the corresponding building
boundary �Elev is finally selected as the key parameter of
our proposed 3DMA weighting function. As Fig. 2 shows,
the background figure is a ‘sky mask’ which is a skyplot
with the building boundary (Ng et al. 2019). A LOS satel-
lite with green color signed ‘B’ and a NLOS satellite with
red color signed ‘D’ are plotted. The point ‘O’ denotes the
receiver location. ‘A’ and ‘C’ denote the corresponding posi-
tions of the building boundary for the two satellites. Thus,
�Elev−→

AB
= ElevB−ElevA and�Elev−→

CD
= ElevD−ElevC .

�Elev−→
AB

is bigger than 0° and �Elev−→
CD

is smaller than 0°.

The measurement error �Measurement here we adopted
is the absolute value of the L1 pseudorange residual since it
can better reflect the severity ofmultipath effects (Hsu 2017).
To make sure the pseudorange residual can better reflect
the actual pseudorange error, we carried out the PPP-RTK
mentioned in Sect. 2.1 to obtain the converged coordinates
of the static experiments by excluding the predicted NLOS
receptions by 3D building models (the elevation angle of the

satellite is smaller than the elevation angle of the correspond-
ing building boundary).With the known coordinates andSSR
information from the PPP-RTK server end, the ambiguity-
fixed receiver clock could be estimated. Then, all corrections
and parameters in theGNSSmeasurementmodel, Eq. (2), are
known.We can therefore compute the pseudorange residuals
by eliminating relevant corrections and estimated parameters
from the pseudorange measurements based on Eq. (2).

The 3DMA weighting function is developed by drawing
lessons from classic elevation-dependent weighting in the
form of the exponential function (Euler and Goad 1991) and
C/N0 weighting (Realini and Reguzzoni 2013). The function
W3DMA indicates the behavior of the measurement error as a
function of�Elev values. It also takes the formof a piecewise
function that consists of three segments considering the mea-
surement error distribution in Sect. 4.1. When the �Elev of
a satellite is larger than the threshold deg T ◦

3DMA, a standard
benchmark weighting, 1, is given. It means that the initial
variance of themeasurementwill not be changed.The parts of
0◦ < �Elev < T ◦

3DMA and �Elev ≤ 0◦ are modeled by two
kinds of exponential functions. The 0° indicates the building
boundary. The piecewise function is shown in Eq. (5). T ◦

3DMA
is empirically set to 30°. Besides, the parameters including
a3DMA, b3DMA, A3DMA, and F◦

3DMA indicate the specific
shape of the fitting function. Specifically, a3DMA, b3DMA

decide the bending of the exponential curve. F◦
3DMA decides

the �Elev which the function will set the weight directly by
A3DMA. These kinds of parameters are usually tuned directly
inmany studies based on experimental data (Ng et al. 2020a).
Amore accurate determination used in this studywas realized
based on nonlinear least squares by modeling an optimiza-
tion problem tofit themeasurement error (https://github.com/
ceres-solver/ceres-solver). Note that a suitable setting based
on experiences can also achieve similar performance relative
to the accurate determination.

W3DMA(�Elev) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1, �Elev ≥ T ◦
3DMA

10
− �Elev−T ◦

3DMA
b3DMA 0◦ < �Elev < T ◦

3DMA

10
− �Elev−T ◦

3DMA
a3DMA

((

A3DMA

10
− F◦

3DMA−T ◦
3DMA

a3DMA

− 1

)
�Elev−T ◦

3DMA
F◦
3DMA−T ◦

3DMA
+ 1

)

, �Elev ≤ 0◦
(5)

The C/N0 weighting proposed by Realini and Reguzzoni
(2013) is also used in this study. In Eq. (6), CN denotes
the value of C/N0 and parameters (TC/N0 , FC/N0 , aC/N0 ,
AC/N0 .) are also set based on nonlinear least squares.
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Fig. 2 Illustration of �Elev in a sky mask. The elevation angle differ-
ence of each black line denotes the �Elev of each satellite

Fig. 3 LOS and NLOS distributions in C/N0, and elevation angle of an
open-source dataset inKaggle. (https://www.kaggle.com/competitions/
gnss-classification/data)

WC/N0(CN ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, CN ≥ TC/N0

10
−CN−TC/N0

aC/N0

⎛

⎝

⎛

⎝ AC/N0

10
− FC/N0

−TC/N0
aC/N0

− 1

⎞

⎠ CN−TC/N0
FC/N0−TC/N0

+ 1

⎞

⎠, CN < TC/N0

(6)

Equation (7) shows the classic elevation-angle-dependent
strategy which is also used in this study. e denotes the eleva-
tion angle.

WElev(e) =
{
1, e ≥ 30◦

1
2 sin(e) , e < 30◦ (7)

All weighting functions indicate the behavior of the
measurement error as a function of corresponding param-
eters, e, C/N0, and �Elev. Importantly, 3DMA weighting
aims to compensate for the insufficiency of other weight-
ing methods (which is the multipath/NLOS effect with
high-elevation angles and high-C/N0) like elevation-angle-
dependent weighting and C/N0 weighting but not replace
them. Figure 3 shows a distribution of LOS and NLOS of
an open-source dataset. We can see many NLOS receptions
(assuming �Elev < 0) with high-C/N0 and high-elevation
angle.

Thus, wewill combine them to generate the proposed final
weighting. The combination strategy is shown in Eq. (8).
Considering that C/N0 weighting and 3DMA weighting are
both concluded based on the samemeasurement errors, there
is probably some shared information used. We use a linear
function to combine them by fitting the measurement error
�Measurement.α andβ are their coefficients, andweassume
α + β = 1. After obtaining the WC/N0 and W3DMA of all
data (assuming there are n measurements) which indicate
the behavior of the measurement error, the least square esti-
mation in Eq. (9) to fit the measurement error can be carried
out for estimating α and β. σ0 is the unit of the measurement
error and it can also be obtained when we do the fitting. For
the classic elevation-angle-dependent weighting method, it
is widely used for the data processing of GNSS base stations
in open-sky environments, reflecting the common errors in
the signal propagation (e.g. atmospheric error and multipath
in the vertical direction). Thus, we generate the final error
prediction by calculating the product of theWElev(e) and the
combination of WC/N0(CN ) and W3DMA(�Elev). Note that
the outputs of all weighting functions above are used as the
scale factor for the standard deviation of the measurement
error in the position estimation of PPP-RTK while not used
as weights of measurements directly.

W (�Elev, CN , e)

= WElev(e) · (
αWC/N0(CN ) + βW3DMA(�Elev)

)
(8)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ0

⎡

⎢
⎣

WC/N0, 1 W3DMA, 1
...

...

WC/N0, n WC/N0, n

⎤

⎥
⎦ ·

[
α

β

]

=
⎡

⎢
⎣

�Measurement1
...

�Measurementn

⎤

⎥
⎦

α + β = 1
(9)
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Fig. 4 The flowchart of 3DMA PPP-RTK

2.3 3DMA PPP-RTK

The flowchart of 3DMAPPP-RTK is displayed in Fig. 4. The
left part shows the processing flow of the PPP-RTK client
end and the right part is the processing of 3D building model
processing. As for 3DMA PPP-RTK, the proposed 3DMA
weighting should be achievedbefore themeasurement update
of EKF. The processing of the 3D building model aims to
compute the �Elev. To reduce the real-time computational
load, a pre-generated database of skymaskwas built (Ng et al.
2020b). The database collects sky masks of candidates in all
non-building areas in the form of a 2× 2-m grid based on the
latitude and longitude. The sky masks of users can therefore
be interpolated according to the initial guess of the position.
The initial guess can be obtained by single point positioning
with pseudoranges or the PPP-RTK result of the previous
epoch. It is noted that a poor initial guess of the position will
probably deteriorate the performance of 3DMA weighting.
Therefore, sometimes we need to update the initial guess by
carrying out the EKF iteratively until acquiring a converged
initial guess. After obtaining the�Elev, all weightings could
be achieved. After the parameter estimation, empirical resid-
ual editing for pseudorange, and carrier-phase observations
will be carried out for discarding outliers. The thresholds
for pseudorange and carrier-phase observations are 3 m and
0.03 m, respectively. Finally, the 3DMA PPP-RTK results
will be output.

3 Data and experiments

To realize the PPP-RTK server processing, we selected 9
GNSS reference stations from the Hong Kong satellite posi-
tioning reference station network. As Fig. 5 shows, the
reference stations cover the urban area of positioning exper-
iments. The closest distance between the reference stations
is about 10 km. In total, we collected 11 groups of static

Fig. 5 Distribution of reference stations used for the developed PPP-
RTK server

GNSS data in different levels (slight, medium, deep) of urban
environments and one group of vehicle-borne kinematic data
in a general medium urban environment. In both static and
vehicle-borne experiments, the kinematic mode EKF-based
user positioning is used for the user coordinates estima-
tion. Also, the ambiguity resolution was in the continuous
mode, which indicates the resolution was carried out in every
epoch without a prior constraint of already fixed ambigui-
ties. The ground truths of the trajectory of the vehicle-borne
kinematic experiment were provided by the high-precision
RTK/INS processing (SPAN combined system and IE soft-
ware of NovAtel). The ground truths of the locations of all
static experiments were provided by the converged results
of 3DMA PPP-RTK. Table 1 gives the detailed data pro-
cessing strategies of 3DMA PPP-RTK. Note that although
BDS-3 observations could be obtained by the user, they were
not used for the ambiguity resolution because the PPP-RTK
server end lacks BDS-3 observations. In addition, BDSGEO
satellites were excluded in our processing, considering their
relatively poor accuracy.

The locations and the sky masks of the 11 static GNSS
experiments are shown in Fig. 6. From (a) to (k), each subfig-
ure shows the condition of each static experiment. We define
the urbanization rate of a specific location by the mean sky
mask elevation angle μm and the sky mask elevation angle
standard deviation σm (Wen et al. 2020). N is the number of
azimuth angles from the sky mask. The default spacing is 1°,
so N is equal to 360. ea denotes the boundary elevation at
the azimuth angle a. Table 2 shows the μm and σm values of
all static experiments. In general, if the location is in a deep
urban canyon, the high-rise structures will result in a large
μm and a relatively small σm. When μm is large, a larger σm
will further deteriorate the satellite geometry.
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Table 1 Detailed data processing strategies of the proposed 3DMA PPP-RTK

Items Descriptions

Regional network for server 9 GNSS reference stations from Hong Kong satellite positioning reference station network (https://www.
geodetic.gov.hk/en/satref/satref.htm)
(GPS, Galileo, BDS-2)

Experiment data 11 groups of static GNSS data
1 group of kinematic GNSS data (GPS, Galileo, BDS-2, BDS-3)

GNSS measurements Dual-frequency pseudorange and carrier-phase measurements from a NovAtel geodetic receiver (PwrPak7D)
with an antenna (HXCGPS1000)

3D building model Hong Kong 3D city model (https://www.landsd.gov.hk/en/spatial-data/open-data.html)

Sampling-rate 1 s of data for the PPP-RTK client end
30 s of data for the PPP-RTK server end

Elevation cut-off angle 10°

OSBs Code OSBs from CAS (Chinese Academy of Sciences) (http://ftp.gipp.org.cn)
Phase OSBs generated from PPP-RTK server end

Antenna phase center igs14.atx for satellite antenna PCOs and PCVs

Tide displacements Solid earth tides, pole tides and ocean tidal loading (Petit and Luzum 2010; Lyard et al. 2006)

Troposphere delays Saastamoinen model supplied the priori values, and GMF mapping function was adopted (Saastamoinen 1972;
Boehm et al. 2006)

Slant ionospheric delays Estimated as random-walk parameters

Satellite orbits and clocks Using the rapid precise satellite orbit and precise satellite clock products of GFZ (ftp://ftp.gfz-potsdam.de)

Receiver clocks Estimated as white noise like parameters

Ambiguities Estimated as constants over each continuous arc

Tropospheric constraint Constraints of centimeter-level (2 cm) noises in Eq. (4)

Ionospheric constraint Constraints of centimeter-level (5 cm) noises in Eq. (4)

Station coordinates For server: fixing the known coordinates
For client: estimated as random-walk parameters

μm =
∑N

a=1 ea
N

(10)

σm =
√

∑N
a=1(ea − μm)2

N − 1
(11)

According to the specific conditions of all static experi-
ments in HongKong, the 11 locations are classified into three
kinds of urban environments (slight, medium, and deep). The
slight urban environment has aμm less than 30°. Themedium
urban environment has a μm larger than 30° but less than
50°. The deep urban environment not only has a μm larger
than 50°, but also has a σm larger than 10°. The subfigure (a)
denotes one slight urban environment with smallμm and σm.
The subfigures (b) to (g) denote six medium urban environ-
ments. Note that although location (f) has a large μm equal
to 45.11°, its σm is only 5.91° which means the geometry
is still not bad. The subfigures (h) to (k) denote four deep
urban environments. The red dot in each subfigure denotes
the location. The sky mask is also plotted at the bottom left
of each subfigure.

Figure 7 shows the trajectory of the vehicle-borne kine-
matic experiment. This trajectory is in a medium urban area

basically. The start location of this trajectory is an intersec-
tion and the end location is the tunnel entrance. There are
several complex environments during the trajectory which
will cause a poor satellite geometry and few satellites, espe-
cially near the obstacles (i.e., buildings) plotted in the figure.

To analyze the performance of 3DMA PPP-RTK, we pro-
cessed all experiments by four solutions, which are listed
in Table 3. As for the urban precise positioning, we usually
hope to achieve a decimeter-level accuracy that can target
the applications such as lane-keeping for intelligent vehi-
cles. Thus, in this study, if the horizontal positioning error
is less than 20 cm, we regard these results are available and
they have converged successfully.

4 Results

4.1 Demonstration of the 3DMAweighting
and weighting combination

In this section, we will first ensure the effectivity of the
selected parameter used in 3DMA weighting by correlation
analysis. Then, tunning and fitting are tried to set suitable
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Fig. 6 Locations of all the static experiments

Table 2 Mean values and standard deviations of sky mask elevation
angles of all static experiments

Experiments μm(°) σm(°)

(a) 17.73 14.14

(b) 37.70 13.11

(c) 36.85 15.02

(d) 42.22 16.40

(e) 40.17 15.91

(f) 45.11 5.91

(g) 37.76 13.00

(h) 55.33 13.50

(i) 55.95 11.90

(j) 51.88 13.38

(k) 55.58 13.76

parameters for relevant functions. Finally, we can obtain the
results of the proposed combined weighting.

Considering there are a lot of multipath and NLOS recep-
tions in the measurement errors, we used Spearman’s rank
correlation coefficient for analysis (Myers and Sirois 2006).
The coefficient is not limited by the overall distribution shape
and the sample size of the two variables. The measurement
errors computed based on nine static GNSS data ((a)–(f) and
(i)–(k)) are used for analysis. The static experiments (g) and
(h) are regarded as the control group, and they are only used
for the positioning experiments in the next section, but not for
the weighting analysis. Note a few errors bigger than 10 m
are excluded in the analysis based on our experiences. They
are probably from seriousNLOS receptionswith huge delays
(> 50 m), and the huge errors may contaminate the fitting.
Figure 8 shows the results of the correlation analysis. The
value in each grid ranged from -1 to 1 denotes the correla-
tion coefficient between the corresponding ordinate object
and the corresponding abscissa object. If the value is smaller
than 0, the correlation is negative and the color is blue. On
the contrary, the correlation is positive and the color is red.
The bigger the absolute value is, the higher the correlation is.
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Fig. 7 Reference trajectory of the
vehicle-borne kinematic
experiment

The left analysis uses all data and the right analysis uses the
data with the measurement error bigger than 2 m. According
to the results, we can see the correlation between the mea-
surement error and C/N0 and the correlation between the
measurement error and �Elev are both negative and signifi-
cant. C/N0 is significant considering all data. However, if we
focus on big measurement errors,�Elev with a coefficient of
− 0.37 is more significant than C/N0 with a coefficient of −
0.12. We think it is due to many measurements with NLOS
and multipath receptions still having strong signal strengths.
Therefore, the parameter �Elev could be useful and it can
augment the C/N0 weighting.

According to the proposed weighting functions in
Sect. 2.2, there are still several unknown parameters to
be set. Thus, Fig. 9 shows the measurement errors with
respect to C/N0 and �Elev values. The mean values
are plotted to give a general view. By nonlinear least
squares, the C/N0 weighting adopts the parameters of(
TC/N0 = 50, FC/N0 = 25, aC/N0 = 34, AC/N0 = 43

)

when processing static data with the NovAtel geodetic
receiver. The 3DMA weighting adopts the parameters of(
T ◦
3DMA = 30◦, a3DMA = 35, b3DMA = 160, A3DMA = 32,

F◦
3DMA = −24◦). We can see the predicted curves are close

to the mean values. Interestingly, for the 3DMA weighting,
we can see that �Elev of 0° signifies whether the signal
may be reflected and diffracted. This phenomenon is also
the main reason why we divide the function into three
segments. Figure 10 clearly shows the combined weighting
surface

(
0.615WC/N0(CN ) + 0.385W3DMA(�Elev)

)
of the

measurement errors with respect to �Elev and C/N0. The
estimation coefficients are obtained by Eq. (9). We can see
that this fitting surface is closer to the actual distribution
of the measurement errors. The two techniques are thus
complementary. Although the parameters and coefficients

in this study were accurately estimated based on parts of
collected data, we think that they can be tried in other
datasets with similar environments and GNSS receivers and
antennas. Users can try to tune them based on experiences.

4.2 Positioning results of static experiments

In this section, the results of all static experiments will be
shown and analyzed. The following three figures show three
selected cases, and more results will be listed in Table 4.
Figure 11 shows the results of the static experiment (g)
in the medium urban environment, and we do not use the
data of this experiment for the previous weighting analy-
sis. We can find the result of the solution PPP-RTK_E-W is
good with the RMSs of 1.3, 2.0 and 6.5 cm in three com-
ponents. There are only a few wrong jump points, and the
result still has a slight convergence process at the begin-
ning. For the result of the solution PPP-RTK_E-C/N0-W,
we can find the positioning precision is improved, and the
RMSs are 0.9, 1.1 and 5.1 cm. Successful ambiguity fix-
ing is achieved instantaneously. But we can find the new
processing still causes a few abnormal fluctuations in the
up component. When using the 3DMA weighting, the posi-
tioning precision becomes better, with the RMSs of 0.9, 1.0
and 4.8 cm. In general, the results indicate that the clas-
sic PPP-RTK with elevation-angle-dependent weighting and
residual editing can already obtain a good performance in a
medium urban environment. Although C/N0 weighting and
3DMA methods do not bring significant improvement, they
still work on enhancing the results. In a slight and medium
urban environment, although there will be NLOS and com-
plex multipath receptions, good LOS signals still dominate
the GNSS processing. The outliers could also be removed
easily by common residual editing. However, we can find
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Table 3 Solutions of PPP-RTK
Solutions Descriptions

PPP-RTK_E-W PPP-RTK with elevation weighting
Equation (7)

PPP-RTK_E-C/N0-W PPP-RTK with elevation and C/N0 weighting
Equations (6) and (7)

PPP-RTK_E-3DMA-W PPP-RTK with elevation and 3DMA weighting
Equations (5) and (7)

PPP-RTK_E-C/N0-3DMA-W PPP-RTK with elevation, C/N0 and 3DMA weighting
Equations (5–8)

Fig. 8 CC (Correlation coefficient) analysis. The measurement error, C/N0 and �Elev are analyzed together. Different values and colors denote the
correlation coefficients

Fig. 9 Measurement errors with respect to C/N0 values and with respect to �Elev values. The blue lines denote the mean values and the green lines
denote the predicted errors generated by corresponding weighting functions. The absolute errors are denoted by the red dot
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Fig. 10 Proposed weighting
surface of combining �Elev and
C/N0 weighting functions

Fig. 11 Positioning errors in
three components and the
satellite numbers of the static
experiment (g). The RMS values
(cm) of the positioning errors in
three components are also shown
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Fig. 12 Positioning errors in
three components and the
satellite numbers of the static
experiment (h). The RMS values
(cm) of the positioning errors in
three components are also shown

Fig. 13 Positioning errors in
three components and the
satellite numbers of the static
experiment (k). The RMS values
(cm) of the positioning errors
(after 8500 s) in three
components are also shown
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the result of PPP-RTK_E-C/N0-3DMA-W around 43,000 s
is even worse than the result of PPP-RTK_E-W. The reason
is probably that some observations with low C/N0 and small
�Elev still retain good accuracy. The empirical C/N0 and
3DMA weightings cannot deal with some abnormal condi-
tions. Fortunately, the conditions are only a small number.

In slight-medium urban environments, the effects of
3DMA weighting and C/N0 weighting do not seem very
significant. However, for the results of static experiments
in deep urban environments, the proposed 3DMA weighting
algorithm could bring more significant improvements. Fig-
ures 12 and 13 show the results of the static experiments (h)
and (k), respectively. According to Fig. 12 we can find the
C/N0 weighting does not significantly improve the horizontal
positioning precision and it still has some abnormal fluctua-
tions. However, introducing 3DMA weighting can improve
the result dramatically. The RMSs of the results of PPP-
RTK_E-C/N0-3DMA-W are 9.1, 5.3 and 29.3 cm. We think
this is because building-related errors are more dominant in
this environment. The result of PPP-RTK_E-W is affected
by poor observations, and the quality control means cannot
deal with such complicated conditions (frequent multipath
and NLOS receptions). The C/N0 weighting still cannot dis-
tinguish all bad observations in the deep urban environment.
So, the result of PPP-RTK_E-C/N0-W still has a large fluc-
tuation.

The location of the experiment (k) in Fig. 13 has a
very complex environment among all locations. Although
the mean available satellite number is about 11, there are
about half satellites with �Elev < 0◦. According to the
results, the horizontal positioning precision of PPP-RTK_E-
W is sub-meter level. Only 33.3% of the epochs achieve
available positioning precision. However, after applying the
C/N0 weighting, the horizontal positioning precision can
be improved by more than 50%, and 77.2% of the results
are available. C/N0 weighting causes obvious convergence
progress. Further using the 3DMA weighting, the horizon-
tal precision after convergence can reach 15 cm and some
poor results are improved. Although the positioning results
after the convergence become more precise and stable, the
added 3DMA weighting causes more obvious convergence
progress (about 5 min) at the beginning which is not good
for the positioning in a short time (several epochs). About
73.8% of the results are available. The phenomenon is likely
due to some measurements are not suitably weighted. More
analyses about the phenomenon are in the discussion section.
Fortunately, the phenomenon is a special case in our exper-
iments and the overall effectiveness of 3DMA weighting is
still inspiring.

The results of all static experiments are listed in Table
4. The RMS results, the percentages of the epochs with suc-
cessful convergence and the ambiguity-fixed rates are shown.
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We used the ratio test to decide if the candidate integer solu-
tion would be selected. The threshold of 3.0 was used in
all experiments. According to the results, we can find that
in the slight and medium urban environments, the effects of
the proposed weighting are limited but it can still improve
results slightly. In deep urban environments, it is hard for
PPP-RTK to realize centimeter-level positioning. By apply-
ing the proposed weighting, the precision and the availability
are both improved a lot. The 3DMA PPP-RTK could obtain
more than 90% results with < 20 cm horizontal position-
ing precision. The ambiguity-fixed rates decrease obviously
in deep urban environments relative to in slight-medium
environments. After applying C/N0 and 3DMA weightings,
successful ambiguity resolution could be achieved at more
epochs. For most experiments in deep urban environments,
3DMA weighting can further increase the fixed rates rela-
tive to the results with only C/N0 weighting. In addition,
we can find C/N0 weighting and 3DMA weighting are not
always effective in every experiment while combining them
can obtainmore stable and reliable results. TheC/N0 weight-
ing cannot better evaluate some poor measurements with
high-C/N0. The 3DMA weighting will also be devalued by
the building model with poor accuracy and non-building
obstacles (e.g., trees). We think the 3DMA weighting can
be complementary to the classic C/N0 weighting.

4.3 Positioning results using vehicle-borne data

Besides the static experiments, the processing of one vehicle-
borne kinematic experiment was also carried out. In general,
the urbanization level along the trajectory is medium-level.
Note that no matter the C/N0 values or the multipath and
NLOS receptions, the characteristics in the kinematic exper-
iment are different from those in the static experiments. In
the kinematic experiments, the C/N0 values will become
smaller and the multipath is changing quickly. We adjusted
the parameters of the weighting function. The parame-
ters

(
TC/N0 = 40, FC/N0 = 20, aC/N0 = 30, AC/N0 = 30

)

ofC/N0 weighting are used based on our experience (Ng et al
2020a). The parameters of 3DMA weighting are assumed
not changed. According to the results, we can find there are
several big fluctuations. The C/N0 weighting can improve
a lot but it remains some abnormal results. By introducing
the 3DMAweighting, the results are further improved. More
than 90% of the results are available while the raw PPP-RTK
only outputs about 55.2%of available results. The ambiguity-
fixed rate also rises from 75.5% to more than 86% with the
help of the weightings. The results further indicate the effec-
tiveness of using the 3DMA weighting for urban PPP-RTK
(Fig. 14).

5 Discussions

5.1 Convergence issue caused by improper
measurement weighting

For the results of the experiment (k) in Sect. 4.2, the
3DMA weighing causes an obvious convergence process.
Although the solution PPP-RTK_E-W obtains unsatisfied
results throughout the period, it obtains better results at the
beginning relative to other solutions. We think some mea-
surements were not weighted accurately. As we know, DOP
is to state how the measurement error will affect the final
state estimation, indicating a mathematical effect of satellite
geometry on positioning precision (Langley 1999). How-
ever, we cannot assume all measurements are independent
with the same precision level in practice. The weighted DOP
has been proved more accurate than the conventional DOP
on representing the position error trends (Won et al. 2012).
In other words, although all satellites were not excluded
in our processing and it seems that we maintain the dilu-
tion of precision, the unsuitable weightings worsen it. We
suggest the use of weighting should consider its effects on
the weighted DOP, although it is difficult for us to evalu-
ate measurements precisely. Furthermore, we tried to only
apply the weighting to some selected satellites with large
predicted measurement errors tentatively, and the new solu-
tion is named PPP-RTK_E-C/N0-3DMA-W_D. According
to the results in Fig. 15, the convergence progress is almost
avoided and up to 96.7% of results are available. The results
confirm there are some measurements need not be weighted.
However, theway of selecting onlyworks in post-processing.
Better use of weighting and selection of measurements still
need further research.

5.2 Instantaneous solution

The positioning results in Sect. 4 are all based on EKF and
the filtering can obtain a good positioning result after con-
vergence. We here consider the condition of instantaneous
(one-epoch) positioning for some time-critical applications.
Figure 16 shows the instantaneous positioning results of the
static experiment (g). Surprisingly, for PPP-RTK_E-W, there
are a lot of epochs with failed ambiguity resolution, and
only 65.4% of the results are available. Once applying the
proposedweighting algorithm, the positioning results are sig-
nificantly improved.About 99.5%of the results are available.
In urban environments with frequent multipath and NLOS
receptions, it is difficult for classic PPP-RTK to achieve
instantaneous centimeter-level positioning stably. The results
indicate the importance of the weightings when processing
the GNSS data in complex urban environments.
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Fig. 14 Positioning errors in
three components and the
satellite numbers of
vehicle-borne experiment

Fig. 15 Positioning errors in
three components and the
satellite numbers of static
experiment (k). The RMS values
(cm) of the positioning errors
(after 8500 s) in three
components are also shown
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Fig. 16 Instantaneous positioning
errors in three components

6 Conclusions and outlook

To enhance the performance of PPP-RTK in complex urban
scenarios and inhibit the deterioration caused by frequent
multipath and NLOS receptions, a novel 3D-mapping-aided
weighting algorithm is provided in this study. We developed
a PPP-RTK platform based on the undifferenced uncom-
bined PPP-RTK model first. The server end generates the
phase OSBs and atmospheric corrections. The client end
introduces the atmospheric corrections by regarding them
as constraints in a form of measurement. The difference
between the satellite elevation angle and the elevation angle
of the corresponding building boundary �Elev is adopted
for the 3DMA weighting function. We investigated the pro-
posed weighting function by analyzing the correlation and
the fitting performance. The results indicate that the 3DMA
weighting can compensate for the classic C/N0 weighting.

Several groups of static GNSS data and one group of
vehicle-borne kinematic GNSS data were processed by using
the proposed 3DMA algorithm. In slight and medium urban
environments, the proposed algorithm can accelerate some
initial convergences and mitigate some outliers, but the posi-
tioning precision is not improved a lot and they are all
with centimeter-level precision. For the static experiments
in deep urban environments, it is difficult for classic PPP-
RTK to achieve the positioning with a horizontal precision
(< 20 cm) stably when only using elevation weighting. The
unsatisfied performance owes to insufficient satellites, poor

satellite geometries and complex contaminated GNSS mea-
surements. In some experiments, less than 50% of the results
are available. However, the proposed algorithm can improve
the precision by more than 50%, and more than 90% of
epochs could be available.

However, it is still a challenging problem to realize high-
precision GNSS positioning in urban canyons. We will
explore realizing the factor graph optimization algorithm in
our future work to enhance the capacity of the weighting
use and mitigate the effects of GNSS outlier measurements.
In addition, more conditions in urban environments will be
considered, like using the low-cost receiver, single-frequency
data, etc.
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